Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add filters

Language
Document Type
Year range
1.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.01.27.21250559

ABSTRACT

Coronavirus Disease 2019 (COVID-19), caused by Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2), is associated with a wide range of clinical manifestations, including autoimmune features and autoantibody production. We developed three different protein arrays to measure hallmark IgG autoantibodies associated with Connective Tissue Diseases (CTDs), Anti-Cytokine Antibodies (ACA), and anti-viral antibody responses in 147 hospitalized COVID-19 patients in three different centers. Autoantibodies were identified in approximately 50% of patients, but in <15% of healthy controls. When present, autoantibodies largely targeted autoantigens associated with rare disorders such as myositis, systemic sclerosis and CTD overlap syndromes. Anti-nuclear antibodies (ANA) were observed in ~25% of patients. Patients with autoantibodies tended to demonstrate one or a few specificities whereas ACA were even more prevalent, and patients often had antibodies to multiple cytokines. Rare patients were identified with IgG antibodies against angiotensin converting enzyme-2 (ACE-2). A subset of autoantibodies and ACA developed de novo following SARS-CoV-2 infection while others were transient. Autoantibodies tracked with longitudinal development of IgG antibodies that recognized SARS-CoV-2 structural proteins such as S1, S2, M, N and a subset of non-structural proteins, but not proteins from influenza, seasonal coronaviruses or other pathogenic viruses. COVID-19 patients with one or more autoantibodies tended to have higher levels of antibodies against SARS-CoV-2 Nonstructural Protein 1 (NSP1) and Methyltransferase (ME). We conclude that SARS-CoV-2 causes development of new-onset IgG autoantibodies in a significant proportion of hospitalized COVID-19 patients and are positively correlated with immune responses to SARS-CoV-2 proteins.


Subject(s)
Severe Acute Respiratory Syndrome , Scleroderma, Systemic , Myositis , COVID-19
2.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.01.29.428535

ABSTRACT

The SARS-CoV-2 variant carrying the Spike protein mutation G614 was first detected in late January 2020 and within a few months became the dominant form globally. In the months that followed, many studies, both in vitro and in animal models, showed that variants carrying this mutation were more infectious and more readily transmitted than the ancestral Wuhan form. Here we investigate why a recently published study by van Dorp et al. failed to detect such higher transmissibility of the G614 variant using homoplasy-based methods. We show that both low diversity and recombination confound the methods utilized by van Dorp et al. and significantly decrease their sensitivity. Furthermore, though they claim no evidence of recombination in their dataset, we and several other studies identify a subset of the sequences as recombinants, possibly enough to affect their statistic adversely.

3.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.01.29.428808

ABSTRACT

Covid-19 is the most devastating pandemic of the past 100 years. A zoonotic transfer presumably at a wildlife market introduced the causative virus, SARS-CoV-2 (sarbecovirus; beta-coronavirus), to humans in late 2019. Meanwhile, the mechanistic details of the infection process have been largely elucidated, and structural models explain binding of the virial spike to the human cell surface receptor ACE2. Yet, the evolutionary trajectory that gave rise to this pathogen is poorly understood. Here we scan SARS-CoV-2 protein sequences in-silico for innovations along the evolutionary lineage starting with the last common ancestor of coronaviruses. Substantial differences in the sets of proteins encoded by SARS-CoV-2 and viruses outside sarbecovirus, and in their domain architectures, indicate divergent functional demands. By contrast, sarbecoviruses themselves are almost fully conserved at these levels of resolution. However, profiling spike evolution on the sub-domain level using predicted linear epitopes reveals that this protein was gradually reshaped within sarbecovirus. The only epitope that is private to SARS-CoV-2 overlaps with the furin cleavage site. This lends phylogenetic support to the hypothesis that a change in strategy facilitated the zoonotic transfer of SARS-CoV-2 and its success as a human pathogen. Upon furin cleavage, spike switches from a "stealth mode" where immunodominant ACE2 binding epitopes are largely hidden to an "attack mode" where these epitopes are exposed. The resulting reinforcement of ACE2 binding extends the window of opportunity for cell entry. SARS-CoV-2 variants fine-tuning this mode switch will be particularly threatening as they optimize immune evasion.


Subject(s)
COVID-19
4.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.01.29.428847

ABSTRACT

In the context of searching for COVID-19 related scientific literature, we present an information retrieval methodology for effectively finding relevant publications for different information needs. We discuss different components of our architecture consisting of traditional information retrieval models, as well as modern neural natural language processing algorithms. We present recipes to better adapt these components to the case of an infodemic, where, from one hand, the number of publications has an exponential growth and, from the other hand, the topics of interest evolve as the pandemic progresses. The methodology was evaluated in the TREC-COVID challenge, achieving competitive results with top ranking teams participating in the competition. In retrospect to this challenge, we provide additional insights with further useful impacts.


Subject(s)
COVID-19
5.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.01.29.428834

ABSTRACT

SARS-CoV-2 transmission from humans to animals has been reported for many domesticated species, including cats, dogs and minks. Identification of novel spike gene mutations appearing in minks has raised major concerns about potential immune evasion and challenges for the global vaccine strategy. The genetic variant, known as cluster-five, arose among farmed minks in Denmark and resulted in a complete shutdown of the worlds largest mink production. However, the functional properties of this new variant are not established. Here we present functional data on the Y453F cluster-five receptor-binding domain (RBD) and show that it does not decrease established humoral immunity or affect the neutralizing response in a vaccine model based on wild-type RBD or spike. However, it binds the human ACE-2 receptor with a four-fold higher affinity suggesting an enhanced transmission capacity and a possible challenge for viral control.

6.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.01.28.428743

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a causative agent of COVID-19 pandemic, enters host cells via the interaction of its Receptor-Binding Domain (RBD) of Spike protein with host Angiotensin-Converting Enzyme 2 (ACE2). Therefore, RBD is a promising vaccine target to induce protective immunity against SARS-CoV-2 infection. In this study, we report the development of RBD protein-based vaccine candidate against SARS-CoV-2 using self-assembling H. pylori-bullfrog ferritin nanoparticles as an antigen delivery. RBD-ferritin protein purified from mammalian cells efficiently assembled into 24-mer nanoparticles. 16-20 months-old ferrets were vaccinated with RBD-ferritin nanoparticles (RBD-nanoparticles) by intramuscular or intranasal inoculation. All vaccinated ferrets with RBD-nanoparticles produced potent neutralizing antibodies against SARS-CoV-2. Strikingly, vaccinated ferrets demonstrated efficient protection from SARS-CoV-2 challenge, showing no fever, body weight loss and clinical symptoms. Furthermore, vaccinated ferrets showed rapid clearance of infectious viruses in nasal washes and lungs as well as viral RNA in respiratory organs. This study demonstrates the Spike RBD-nanoparticle as an effective protein vaccine candidate against SARS-CoV-2.


Subject(s)
Fever , Severe Acute Respiratory Syndrome , Weight Loss , COVID-19
7.
researchsquare; 2021.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-162289.v1

ABSTRACT

Cancer patients have increased morbidity and mortality from Coronavirus Disease 2019 (COVID-19), but the underlying immune mechanisms are unknown. In a cohort of 100 cancer patients hospitalized for COVID-19 at the University of Pennsylvania Health System, we found that patients with hematologic cancers had a significantly higher mortality relative to patients with solid cancers after accounting for confounders including ECOG performance status and active cancer status. We performed flow cytometric and serologic analyses of 106 cancer patients and 113 non-cancer controls from two additional cohorts at Penn and Memorial Sloan Kettering Cancer Center. Patients with solid cancers exhibited an immune phenotype similar to non-cancer patients during acute COVID-19 whereas patients with hematologic cancers had significant impairment of B cells and SARS-CoV-2-specific antibody responses. High dimensional analysis of flow cytometric data revealed 5 distinct immune phenotypes. An immune phenotype characterized by CD8 T cell depletion was associated with a high viral load and the highest mortality of 71%, among all cancer patients. In contrast, despite impaired B cell responses, patients with hematologic cancers and preserved CD8 T cells had a lower viral load and mortality. These data highlight the importance of CD8 T cells in acute COVID-19, particularly in the setting of impaired humoral immunity. Further, depletion of B cells with anti-CD20 therapy resulted in almost complete abrogation of SARS-CoV-2-specific IgG and IgM antibodies, but was not associated with increased mortality compared to other hematologic cancers, when adequate CD8 T cells were present. Finally, higher CD8 T cell counts were associated with improved overall survival in patients with hematologic cancers. Thus, CD8 T cells likely compensate for deficient humoral immunity and influence clinical recovery of COVID-19. These observations have important implications for cancer and COVID-19-directed treatments, immunosuppressive therapies, and for understanding the role of B and T cells in acute COVID-19.


Subject(s)
COVID-19 , Neoplasms
8.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.11.06.20227215

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has rapidly spread within the human population. Although SARS-CoV-2 is a novel coronavirus, most humans had been previously exposed to other antigenically distinct common seasonal human coronaviruses (hCoVs) before the COVID-19 pandemic. Here, we quantified levels of SARS-CoV-2-reactive antibodies and hCoV-reactive antibodies in serum samples collected from 204 humans before the COVID-19 pandemic. We then quantified pre-pandemic antibody levels in serum from a separate cohort of 252 individuals who became PCR-confirmed infected with SARS-CoV-2. Finally, we longitudinally measured hCoV and SARS-CoV-2 antibodies in the serum of hospitalized COVID-19 patients. Our studies indicate that most individuals possessed hCoV-reactive antibodies before the COVID-19 pandemic. We determined that [~]23% of these individuals possessed non-neutralizing antibodies that cross-reacted with SARS-CoV-2 spike and nucleocapsid proteins. These antibodies were not associated with protection against SARS-CoV-2 infections or hospitalizations, but paradoxically these hCoV cross-reactive antibodies were boosted upon SARS-CoV-2 infection.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL